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Nonlinearities and Nonstationarities in 
Stock Returns 

Pedro J. F. DE LIMA 
Department of Economics, The Johns Hopkins University, Baltimore, MD 21218 (de-lima@jhu.edu) 

This article addresses the question of whether recent findings of nonlinearities in high-frequency 
financial time series have been contaminated by possible shifts in the distribution of the data. 
It applies a recursive version of the Brock-Dechert-Scheinkman statistic to daily data on two 
stock-market indexes between January 1980 and December 1990. It is shown that October 1987 is 
highly influential in the characterization of the stock-market dynamics and appears to correspond 
to a shift in the distribution of stock returns. Sampling experiments show that simple linear pro- 
cesses with shifts in variance can replicate the behavior of the tests, but autoregressive conditional 
heteroscedastic filters are unable to do so. 

KEY WORDS: BDS test; Nonlinearity; Nonstationarity. 

Constancy of the unconditional distribution of asset re- 
turns is a typical assumption of many time series mod- 
els, including the vast class of autoregressive conditionally 
heteroscedastic (ARCH) processes. This class of processes 
models stock prices as nonlinear stationary processes. Mod- 
eling nonlinearities is not a simple task: Not only is the 
number of alternative nonlinear models vast, but their flex- 
ibility also creates the possibility of spuriously good fits, as 
noted by Granger and Terasvirta (1993). Moreover, given 
the rate at which new financial and technological tools have 
been introduced in financial markets (e.g., Miller 1991) the 
case for existence of structural changes (and thus for lack of 
stationarity) seems quite strong, especially when relatively 
large periods of time are considered. For example, Pagan 
and Schwert (1990) and Loretan and Phillips (1994) rejected 
the hypothesis that stock returns are covariance-stationary. 

A characterization of stock returns as nonstationary pro- 
cesses with discrete shifts in the unconditional variance can 
be traced back to Hsu, Miller, and Wichern (1974). Hinich 
and Patterson (1985) challenged this view, supporting the 
alternative hypothesis that stock prices are realizations of 
nonlinear stationary stochastic processes. They argued that 
nonstationarities would bias their frequency-domain-based 
methods toward acceptance of linearity. Given that their test 
statistics clearly indicated a rejection of linearity, they dis- 
carded the existence of nonstationarities in daily stock re- 
turns during the period July 1962 through December 1977. 
Using a different set of tools, Hsieh (1991) found that re- 
jections of linearity in stock returns are mainly due to 
neglected conditional heteroscedasticity and cannot be at- 
tributed to structural changes (or chaotic dynamics). Hsieh 
also showed that a stochastic volatility model appears to 
capture most of the nonlinearities in stock returns. 

Conditional heteroscedastic models have become the 
dominant time series model for stock returns. This class 
of models usually characterizes the volatility of high-
frequency returns as an extremely persistent process. 
Diebold (1986) and Lamoureux and Lastrapes (1990) sug- 
gested that shifts in the unconditional variance could ex- 
plain these common findings of persistence in the con-
ditional variance. Simonato (1992) estimated a general-

ized autoregressive conditionally heteroscedastic (GARCH) 
process with changes in regime-using the Goldfeld and 
Quandt (1973) switching-regression method-to a group of 
European exchange rates and found that consideration of 
structural breaks greatly reduces evidence for ARCH ef- 
fects. In fact, Simonato provided an example of an exchange 
rate-the Swiss franc-in which the ARCH effects become 
statistically insignificant when structural breaks in the un- 
conditional variance are allowed. Another model that cap- 
tures the idea of structural breaks in volatilities is the Cai 
(1994) and Hamilton and Susmel (1994) Markov switch- 
ing ARCH (SWARCH) model. The idea that the pattern 
of conditional volatility is not constant over time was also 
developed by Diebold and Lopez (1995), who studied the 
sample autocorrelation function of the squared change in 
the log daily closing value of the S&P 500 stock index 
during different periods of time and were led to conclude 
that "there seems to be no GARCH effects in the 1980's" 
(p. 459). 

This article develops a testing methodology that for- 
mally attempts to discriminate between rejections of the 
null of linearity due to intrinsic nonlinearity and rejec- 
tions that are due to nonstationarity in the data. The tests 
are based on a functional central-limit-type argument that 
shows that the partial sums of a test statistic introduced by 
Brock, Dechert, and Scheinkman (1987)-hereafter BDS-
converge to Brownian motion. These tests are therefore a 
generalization of the popular BDS test for nonlinearity and 
are sensitive to shifts in variance as well as other changes 
in the distribution of the data. Moreover, this class of tests 
is robust to data generated by heavy-tailed distributions, an 
attractive property given the nature of the data analyzed in 
this article. 

This testing methodology is applied to daily stock-market 
data covering the period January 2, 1980, to December 31, 
1990-namely, the returns on the Standard and Poor's 500 
index (S&P 500) and the value-weighted index of the Cen- 
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ter for Research on Security Prices (VCRSP). The recursive 
BDS tests identify the October 1987 "crash as a highly in- 
fluential event in the study of the dynamics of stock-market 
returns. During the period January 1980 through October 
1987, the recursive BDS tests do not reject the null hypoth- 
esis that both S&P 500 and VCRSP returns series can be 
viewed as a linear combination of iid random variables. The 
test statistics and some sampling experiments also indicate 
the existence of a shift in the distribution of stock returns 
around the stock-market crash of October 1987. 

Although focusing on the impact of nonstationarities on 
the testing of nonlinearities, the article should not be un- 
derstood as implying that nonlinear models are of little rel- 
evance for the study of stock-market dynamics. First, it is 
obvious that the October 1987 crash is not responsible for 
all rejections of iid linearity in stock returns. As pointed 
out by an anonymous referee, this can be clearly seen in 
the following experiment: Consider the daily returns on 
S&P 500 from 1920 to 1986; draw 1,000 sample periods 
of 1,500 consecutive observations. For m = 2, in 868 out 
of the 1,000 samples the BDS statistic is greater than 3.00 ( p  
value of .001). From this perspective, the market dynamics 
of the period between January 1980 and October 1987 are 
unusually stable. Second, although the analysis presented 
in this article shows that consideration of nonstationarities 
reduces the evidence of nonlinearity in the sampling period 
under study, the tests also indicate that after October 1987 
nonlinearities play a more active role in the dynamics of 
stock returns. Third, the methodology used in this article 
has some limitations. In particular, the characterization of 
the stock-market dynamics after the October 1987 crash 
is performed after a sample-splitting exercise suggested by 
the outcome of the testing procedure. This leads to potential 
biases in some of the analysis developed in the article. 

Despite these problems, the article puts forward a signif- 
icant amount of evidence providing additional support to 
the idea that the patterns of conditional heteroscedasticity 
change over time. Some of this evidence comes from some 
sampling experiments with ARCH filters fitted to the stock- 
returns data. These simulation exercises show that typical 
ARCH filters are not consistent with the behavior of the 
recursive BDS tests. Of all the ARCH models considered, 
however, the SWARCH model of Hamilton and Susmel 
(1994) is the data-generating process that comes closer to 
replicating the behavior of the recursive BDS tests in the 
stock-returns data. 

Although somewhat controversial, these results are not 
entirely surprising. In fact, despite the vast literature on 
ARCH modeling, the amount of work on the statistical eval- 
uation of ARCH models is small. Hamilton and Susmel 
(1994) presented predictive power comparisons between 
several ARCH-type models and a simple model that as-
sumes constant variance. No matter what the loss function 
is, the prediction improvements derived from using ARCH 
estimates of conditional variances to estimate the squared 
returns series are quite small. In particular, if the mean 
squared error criterion is considered, the only model to im- 
prove on the constant-variance model is Hamilton and Sus- 
mel's SWARCH model. The estimated SWARCH model- 
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a 15-parameter model-implies, however, conditional het- 
eroscedasticity and a prediction improvement of only 6% 
over a model with constant variance-a 2-parameter model. 
West and Cho (1995) performed similar predictive power 
comparisons for exchange-rates volatilities. Their results 
are in line with those of Hamilton and Susmel (1994). 

The article is organized as follows. Section 1 presents 
the testing methodology used in the article and discusses 
its properties. Section 2 investigates the impact of nonsta- 
tionarities on the findings of nonlinearities previously doc- 
umented in the literature. October 1987 is identified as a 
highly influential observation in the study of nonlinearities 
during the sampling period considered. Section 3 assesses 
the robustness of those results in three different ways. First, 
a study of the behavior of the tests under data generated by 
three different ARCH filters fitted to the data is presented. It 
is then shown that the probability that those models provide 
a good approximation to the true data-generating process is 
quite small. Second, a very simple linear model with two 
unconditional variance periods is considered. Data gener- 
ated from this model appears consistent with the behavior 
of the test statistics on the returns data. Third, this simple 
nonstationary model is used as the data-generating process 
in a simulation study of the properties of the estimators 
of ARCH models. The range of results obtained is consis- 
tent with the typical behavior of ARCH models in high- 
frequency data. In particular, the strong, persistent features 
of volatility processes are clearly reproduced. Section 4 
presents some brief conclusions. 

1. NONLINEARITY TESTS 

Hsieh (1991) investigated the sources of nonlinearity in 
financial markets, concluding that conditional heteroscedas- 
ticity seems to be the main cause for the rejection of the 
hypothesis that (linearly filtered) stock returns are indepen- 
dent and identically distributed (iid). The concept of linear- 
ity used by Hsieh is iid linearity; that is, { y t )  is a linear 
process if the innovation sequence in the Wold decomposi- 
tion for { y , }  forms an iid sequence. Hsieh's testing strategy 
implicitly assumes that { y t }  has an ARMA(p, q ) representa-
tion, for p and q finite. He first fitted a linear autoregressive 
moving average (ARMA) model to the data and then ap- 
plied the BDS test to the estimated residuals of this model. 

The BDS test is based on the fact that, if { y , )  is 
an iid process, then C,,, - (C, , l )m = 0, almost surely 

for all E > 0, and m = 1 , 2 . .  . . , where C,., def 
-

l im~-m CE,m and CE,, = C C15,<,57-I , ( q m 3  Ysm)/(T).  

qm 
def 
= ( y t ,yt+l,.. . ,yt+,-1) defines an m-histoiy pro-

cess, T is the sample size, 1 / . / 1  is the max-norm, and I ,  (., .) 
is the symmetric indicator kernel with I,(z. w) = 1 if 
llz- wI1 < E and 0 otherwise. Brock et al. (1987) showed 
that V,,, = f l(C,, ,  - Cr1)/a,., has a limiting standard 
normal distribution for all E > 0 and m = 2 , 3 , . . . under 
the null hypothesis of iid. Note that o,,, is the asymp- 
totic standard deviation of f l(C,, ,  -CFl)under the null 
of iid. 

The BDS test has been widely applied to financial time 
series (c.f., Brock, Hsieh, and LeBaron 1991; Hsieh 1991). 
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Simulation studies have shown that the test has power 
against a large class of alternatives, including ARCH mod- 
els (see also Bollerslev, Engle, and Nelson 1994). As noted 
by Granger and Terasvirta (1993), however, there is no 
~agrangean-multiplier-type interpretation available for this 
test. Therefore, a rejection of the null hypothesis does not 
suggest the type of alternative models one should consider. 

To avoid rejections of the null hypothesis due to linear 
dependence, the BDS test is commonly applied to the esti- 
mated residuals of ARMA models. The asymptotic distri- 
bution of the test is the same whether one uses estimated 
residuals or the true (unobserved) innovations under the null 
hypothesis of iid (see Brock et al. 1991; de Lima 1996). If 
this residual-based testing procedure is followed, a rejection 
of the null hypothesis of iid can thus be attributed to two 
main factors-the process can exhibit nonlinear dependence 
[either deterministic (e.g., chaos) or stochastic] and/or the 
process can be nonstationary. This is easily understood by 
noting that C,,, is an estimator of Pr{l/qm- Ysmll< E ) ,  

whereas C,,l estimates Pr{jlyt - y, 1 1  < E). Under the iid 
hypothesis, 

that is, the BDS test estimates the difference between the 
joint distribution and the product of the marginal distribu- 
tions in the appropriate intervals. 

Hsieh's (1991) investigation of the causes that lead to the 
rejection of the iid linearity in stock-market returns points 
in the direction of conditional heteroscedasticity, and shows 
that, although ARCH-type models do not fully capture non- 
linearities, a more flexible stochastic volatility model is ca- 
pable of doing so. Hsieh rejected the hypothesis that struc- 
tural breaks are responsible for the rejection of the null 
by means of subsample analysis and by looking at data 
with different (higher) frequencies. Because the BDS test 
rejects the null hypothesis for all different subsamples and 
frequencies, Hsieh concluded that "it is unlikely that infre- 
quent structural changes are causing the rejection of iid" (p. 
1859). 

This testing procedure does not discriminate the effects 
of the October 1987 crash because the observations corre- 
sponding to October 1987 were included in almost all the 
subsamples considered-with the exception of the four sub- 
samples of 15-minute returns for 1988. Given the magni- 
tude of the price variations, October 1987 is likely to play 
an important role in the outcome of the tests. Evidently, 
even from a purely statistical point of view, there are sev- 
eral competing explanations for the nature of the October 
1987 stock market "crash (i.e., a large variation in stock 
prices). It can correspond either to some large shock in a sta- 
tionary linear process, it can be the manifestation of some 
nonlinear process, or it can be attributed to a shift in the 
distribution of the innovations. Furthermore, some combi- 
nations of these factors can also be considered. 

In this article, the robustness of the findings of nonlin- 
earity is evaluated through the partial sums of the BDS 
statistic, 

C ~ , m , [ ~ r j- ( C ~ , l . [ ~ ~ ] ) m ,  (1) 

where CE,m,[TT~ com-denotes the correlation integral C,,, 
puted with the first [Tr] observations. [Tr] denotes the in- 
teger part of T r .  This testing methodology is based on the 
following result by de Lima (1992), which shows that the 
normalized partial sums 

0 lr 5 1, ( 2 )  

converge to a standard Wiener process. 

Theorem 1(de Lima 1992). If {ut)is an iid process with 
distribution function F, then (a) V,,, converges weakly to 
the standard Wiener process and 

where 

Theorem 1 remains valid when a:,, is replaced by a con- 
sistent estimator i?:,,. From the properties of the standard 
Wiener process, it follows immediately that Theorem 1 con- 
tains the BDS test as a particular case (r = 1).This theorem 
also implies that the finite-dimensional distributions (fdd's) 
of V,,,(r) are Gaussian. 

Figure 1 describes the path of the (normalized) partial 
sums of the BDS statistic for a realization of an iid Nor- 
mal(0, 1) (iidN) process, with the 95% critical values for 
the finite-dimensional distribution. As predicted by the re- 
sult in Theorem 1, this path looks like a typical realization 
of a Brownian motion. Note that, although the functional 
VE,,(r) is discontinuous-V,,,(r) is defined in D[O. 11, the 
space of functions on [O,l]that are right-continuous and 
have left-hand limits (cadlag functions)-it converges to 
a stochastic process whose sample paths are continuous. 
Therefore, under the null hypothesis, the probability of 
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Figure 1. Recursive BDS Statistics Computed on 3,000 Independent Observations Generated From a Standard Normal Distribution (left) and 
a Symmetric Pareto Distribution With a = 2 (right). Dashed lines represent the 95% confidence bands. 

abrupt jumps in the path of V,,,(r) diminishes as the sam- 
ple size increases. 

Another important property of the functional V,,,(r) is 
that no moment conditions are imposed on { u t )  to de- 
rive Theorem 1. This is a simple consequence of the fact 
that the correlation integral is built on the indicator kernel 
I,(Utm, U,"), which is a bounded random variable. It fol- 
lows that this family of tests can be used to test the null 
of iid, regardless of the existence of moments of any order 
for the series under scrutiny. Therefore, a realization of an 
iid process ut with a marginal Paretian distribution implies 
that the partial-sums path V,,,(r) should be similar to the 
one obtained when the process ut is normally distributed. 
Figure 1 also describes the path of the (normalized) partial 
sums of the BDS statistic for a realization of an iid process 
with Paretian tails ( a  = 2) along with the 95% critical val- 
ues for the finite-dimensional distribution. The sample path 
is similar to the one obtained with iid Gaussian deviates. 
Therefore, Theorem 1 presents a testing device that will 
discriminate between shifts in variance (or higher moments) 
and large realizations ("outliers") of the random variable. 

This is an important result for stock-market data, 
which seem to be characterized by heavy-tailed marginal 
distributions-see, among others, Akgiray and Booth 
(1988), Hall, Brorsen, and 1rwin (1989), ense en and de Vries 
(1991), Loretan and Phillips (1994), and McCulloch (1996). 
The asymptotic distribution of most statistics that test for 
shifts in mean or higher-order moments will depend on the 
existence of moments that might not be defined for the dis- 
tribution of the innovation process. In particular, for tests 
that look for shifts in the location parameter, such as the 
cumulative sums of squares approach of Inclan and Tiao 
(1994), the distribution's fourth moment should be finite so 
that a functional central limit theorem can be applied. 

Loretan and Phillips (1994) worked out the distribution 
theory for some tests of covariance stationarity when the 
squared innovations lie in the normal domain of attraction 
of a stable law with characteristic exponent a/2-see Mc-
Culloch (1996) for a recent survey of applications of stable 
random variables to finance. This theory is relevant when 
fourth moments are not finite but variances are well defined. 
It should be stressed, however, that empirical applications 

of the Loretan and Phillips approach imply pretesting of 
the maximal moment exponent of the marginal distribution 
( a  = El yt 14 < XI) because the asymptotic distribu- 
tion of the cumulative sum of squares differs for the cases 
a < 4 and a > 4. The large majority of the estimates pre- 
sented by Loretan and Phillips are between 2 and 4, and the 
test of the hypothesis a = 4 against the alternative a < 4 re-
jects the null for many of the time series considered. Mittnik 
and Rachev (1993) and McCulloch (1997) showed that the 
tail index estimator used by Loretan and Phillips is not ro- 
bust against some thin-tailed distributions and some heavy- 
tailed distributions, respectively. Pagan (1996) showed that 
the precision of the tail estimator is considerably reduced 
if the data are conditionally heteroscedastic. 

The asymptotic result presented in Theorem 1 is inde- 
pendent of the value of a .  It should be added that, given 
that the tests defined by Theorem 1 are performed on the 
estimated residuals of some linear model, some moment 
conditions might be required. A more extensive discussion 
of these issues was given by de Lima (1992) showing that 
a finite second moment is a sufficient condition. 

2. NONLlNEARlTlES AND STRUCTURAL 
SHIFTS IN STOCK RETURNS 

In this section, two different stock-returns series are 
tested for nonlinearities and nonstationarities, the returns 
to the S&P 500 stock-market index and the returns to the 
VCRSP index of the Center for Research in Security Prices. 
The data correspond to 2,781 daily observations from Jan- 
uary 2, 1980, to December 31, 1990. This sample period 
is interesting for at least two reasons. First, it includes the 
October 1987 stock-market crash, allowing for a reevalu- 
ation of Hsieh's (1991) findings that evidence of nonlin- 
earity is robust to the consideration of different subsample 
periods. Second, the sample period corresponds basically 
to the eighties, allowing for a reevaluation of Diebold and 
Lopez's (1995) finding that there seems to be no evidence 
of ARCH effects during the eighties. Prior to the analysis 
to be presented, all the series were demeaned and passed by 
a standard linear filter. This consisted of first removing the 
day-of-the-week and the month-of-the-year effects by re- 
gression on dummies. The residual correlations were then 
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Table 1. Nonlinearity Testing-BDS Statistic 

Sample Stock 
E/O 

period index .5 .75 1.00 1.25 1.50 

01/02/80 S&P 500 1.89 
to (.059) 

12/31/90 VCRSP 2.97 
(.003) 

01/02/80 S&P 500 -.61 
to (.542) 

10/01/87 VCRSP .25 
(.803) 

NOTE: BDS statistics for embedding dimension m = 2. Pvalues for the 11d-linear null hypothesis 
are in parentheses. 

removed by an autoregressive filter with order chosen by 
the Schwarz information criterion. 

The application of the BDS test to these two filtered se- 
ries results in an overwhelming rejection of the iid-linear 
null hypothesis, as found by Hsieh (1991). Table 1 suggests 
that this result is robust to choice of E .  To test how sensitive 
this result is to the so-called stock-market crash, I compute 
the same set of statistics on the sample period 01/02/80 to 
10/01/87. The findings of nonlinearity in stock-return data 
seem to be very sensitive to the inclusion of October 1987 
data. For both the S&P 500 and the VCRSP data, the null 
hypothesis of iid linearity cannot be rejected at conventional 
significance levels. 

These results give some support to the findings that char- 
acterize stock returns as noncovariance stationary processes 
(see Hsu et al. 1974; Pagan and Schwert 1990; Loretan and 
Phillips 1994). If the data-generating process is in fact non- 
stationary (with a possible shift in the unconditional vari- 
ance of the innovations), this would cause the BDS test to 
reject the null of iid. It is worth noting that it is not known 
how robust the cumulative sum (CUSUM) test (used by 
both Pagan and Schwert and Loretan and Phillips) is to 
the existence of nonlinearities in the data. For instance, the 
CUSUM test might be misleading if the conditional vari- 
ance of stock returns is not constant over time. At the same 
time, the results presented in Table 1 need to be confronted 
with the possibility that some nonlinear process could gen- 
erate this type of behavior of the BDS test. 

__.--.-
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The recursive BDS-type tests presented in Section 1 can 
be used to shed some light on those issues. In particular, 
they overcome the arbitrariness of sample splitting consid- 
ered in Table 1. Throughout the rest of this section, I set 
m = 2 and E = 1 standard deviation of the data. Some 
experiments with a few other values of E indicate that the 
results to be described are not very sensitive to the choice 
of E .  Figure 2 displays the sample path of the test statistics 
corresponding to the S&P 500 and VCRSP data. 

The evolution of both sample paths shows that for any 
sample split beginning at 01/02/80 and ending at any point 
before 10/15/87 (r E .7) the null of iid would not be re- 
jected at the 5% significance level. Evidently, this analysis 
is constrained by the fact that the tests might have reduced 
power for small values of r-note that for r < .I1 the 
number of observations is smaller than 300. Simulations by 
Brock et al. (1991), however, showed that, at least for sam- 
ple sizes larger than the ones associated with these small r 
values, the sampling distribution of the BDS statistic tends 
to be well approximated by its asymptotic distribution. In 
any case, the results reproduced in Figure 2 seem robust to 
sample-size problems because the sample path of the recur- 
sive tests only gets out of the 95% confidence bands after 
approximately 1,970 observations. This seems to be a rela- 
tively large number of observations, even for test statistics 
that demand large sample sizes. (A more thorough investi- 
gation of power issues is presented in Sec. 3.) 

Therefore, the BDS test finds very little or no evidence 
of nonlinear dependence in stock returns (S&P 500 and 
VCRSP) during the eighties prior to the October 1987 crash. 
The abrupt jump in the sample path of the test statistics is 
also worth notice. By itself, the fact that the sample path 
crosses the 95% confidence bands does not provide a clear 
interpretation of the causes leading to the rejection of the 
hypothesis that stock returns are iid linear. At least two non- 
stationarity alternatives, however, seem capable of generat- 
ing an empirical path for the recursive BDS tests consistent 
with the tests' behavior under the S&P 500 and VCRSP 
indexes. Figure 3 shows a realization of the sample path of 
the BDS tests for two such alternatives. These two exam- 
ples are introduced for the sake of illustration, and it is by 
no means suggested that they are an accurate description of 
the data. 

Figure 2. Recursive BDS Statistics Computed on the S&P 500 lndex (left) and the VCRSP lndex (right) for the Period 1/2/80 to 12/31/90 (2,776 
observations). Dashed lines represent the 95% confidence bands. 
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F~gure3. Recurswe BDS Statistics for Data Generated From a Two-Variance Model (left) and a Transient Variance Change Model (right). Dashed 
lines represent the 95% confldence bands. 

The tirst alternative model is a nvo-vai-inrtce model: that 
is, two random samples of 500 observations were drawn 
from an N(0. 1 )  and an N(0. 4) distribution, respectively. 
The sample path is quite similar to the ones obtained from 
both the S&P 500 and the VCRSP series. especially in the 
region concerned with the jump from one regime to the 
other. Note that Hsieh (1991) presented simulation results 
on the small-sample power properties of the BDS test on a 
similar data-generating process. The test has no problems 
detecting this type of alternatives. The second alternative 
model is a tmrzsicnt va~-inr~ce change TVC model. Here, the 
data-generating process is an independent Gaussian process 

(Xi.with t = 1 .2 . .  . . .%.800)in which the standard devia- 
tion of the data-generating process for f between 1.960 and 
2,000 is four times larger than for the rest of the sample 
period. This TVC model incorporates some of the elements 
of the stochastic volatility model previously proposed by 
Hsieh ( 1  99 I), the main difference being that in the TVC 
model a large variance shock disappears after a fixed num- 
ber of periods. but in the stochastic volatility model the 
shock dies off exponentially. The behavior of the tests un- 
der the TVC model is also quite similar to the behavior of 
the tests under the stock-returns data. 

One relevant question is whether the periods before and 

Figure 4. Recursive BDS Statistics Computed on the S&P 500 Index in Reverse Time (top), After 10/10/87 (bottom left). and After 11/20/87 
(bottom nght). Dashed lines represent the 95% confldence bands. 
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after the jump in the sample path of the recursive tests are 
qualitatively similar. In other words, what contribution to 
the rejection of linearity does the after-crash period pro- 
vide? 

A first approach to this problem is to run the BDS recur- 
sive tests in reverse time; that is, apply the tests to the series 
yt = = lr. . . ) T .If xt is iid SO is y t  The results x ~ - ~ + ~ . t  

displayed at the top of Figure 4 are qualitatively similar 
to the ones obtained in direct time. In particular, there is 
also a pronounced jump in the path of the test statistics, 
occurring roughly between 12/22/87 and 10/13/87. This 
last point corresponds to the peak in this jump and is very 
close to the break-point date provided by the recursive tests 
when run in direct time. Note that from the beginning of 
the sample (12/31/90) up to the jump region the recursive 
tests are now outside the 95% confidence bands for most of 
the period, although only marginally. By comparison to the 
results obtained in direct time, this rejection of the iid null 
suggests that the dynamics of stock returns after October 
87 become more complex. As could have been expected, 
the path appears fairly stable after the jump region. 

Figure 4 also includes the sample path of the recursive 
tests for two sample-splitting exercises in direct time, corre- 
sponding to two different starting points. These two points 
are both chosen to potentially represent the beginning of a 
second period in the sample, as in a two-variance or a TVC 
model. This approach presents some serious difficulties to 
the methodology used in this article because the determi- 
nation of the jump is an outcome of the testing procedure. 
Therefore, the application of the recursive tests to a sub- 
sample of data starting after the (endogenously determined) 
break point is likely to suffer from significant biases. This 

Figure 5. Simulation Experiments With ARCH-type Models. The solid 
line displays the recursive BDS statistics computed on the S&P 500 
index. For GARCH(1, 1) and EGARCH(1, O), the data were generated 
by E = otZt, where Zt is an iid sequence of standard normal variates and 
u f  isgivenby&: = 4.1 x 10-% .082:f_,+ .8798f', andbylndf  = 
-9.206+ .909In $-,- .085zt-7 + .210(1Zt-71- E ( Z ( ) ,  respectively 
For SWARCH-L(3, 2), the data were generated by ut = g(st)1'2~t, with 
~t = utZt, where Zt is a sequence of iid Student-t variates with 8.27 
df and g(st) constant for each of the three volatility periods st.  The 
estimated variance factors are ,201, ,609, and 1.00, and of' is given by 
d f  = 1.1 X + ,077~:-, + .130~:-, + .082dt-rsf-1, he red^-^ 
is a dummy variable that discriminates between positive and negative 
values of E ~ -7 (leverage effects). The state variable st is governed by a 
Markov chain with transition probabilities P = ((.294, 0, .576), (.706, ,035, 
O), (0, ,965, ,424)). The three zeros in P correspond to predetermined 
exclusion restrictions as in Hamilton and Susmel (1994). 

is similar to breaking a regression function in two accord- 
ing to the outcome of a testing procedure. Moreover, even 
if it is conceptually possible to develop corrected statistical 
procedures for this testing strategy, it should be pointed out 
that the method pursued in this article does not formally 
estimate break points but only suggests their possibility. 
Therefore, the starting point for a second period must be 
chosen somewhat arbitrarily. 

The two starting points considered in the graphs at the 
bottom of Figure 4 give rise to quite distinct results. The 
choice of any point between 10/15/87-approximately the 
first time the sample path of the test statistics for the com- 
plete sample (in direct time) crosses the 95% confidence 
bands-and the middle of November 1987 results in the 
sample path of the test statistics crossing the 95% confi- 
dence bands shortly after its initialization point (bottom left 
graph). If one sets the first sample point after 11/20/87, 
however, a different pattern emerges (bottom right graph). 
Although the null hypothesis is still rejected (the terminal 
point in this new sample path is 2.78), evidence of pre- 
dictability becomes considerably weakened. Only for large 
values of r is the sample path outside the 95% confidence 
band. Together with the reverse time results, and despite 
of the potential biases affecting the confidence bands, this 
last graph suggests that evidence for nonlinearity becomes 
stronger after the October 1987 crash. These graphs, how- 
ever, also highlight the idea that nonstationarities tend to 
overstate the evidence for nonlinearity detected by the con- 
ventional BDS test. 

3. ROBUSTNESS OF THE EMPIRICAL FINDINGS 

This section investigates the sampling behavior of the 
recursive BDS tests under some nonlinear and nonstation- 
ary alternatives. As for the BDS test itself, no analytical 
characterization of the behavior of the tests under these al- 
ternative hypotheses is available. Robustness issues are thus 
addressed by means of a simulation study. 

3.1 Nonlinear Alternatives: ARCH-type Models 

Several nonlinear models could be considered as the 
potential data-generating process for the stock-returns se- 
ries studied in Section 2. Models that display conditional 
heteroscedasticity such as ARCH appear, however, to be 
the dominant time series model for financial time series. 
For this reason, the simulation experiments presented in 
this section concentrate on some of the most commonly 
used ARCH-type filters. In particular, a GARCH(1, I), an 
EGARCH(1, O), and a SWARCH-L(3, 2) are estimated on 
the S&P 500 data. This choice of the lag polynomials re- 
flects a combination of common practice [GARCH(l, I)], 
automatic lag selection using Schwarz's information crite- 
rion [EGARCH(l, O)], and compatibility with the previous 
work of Hamilton and Susmel (1994) [SWARCH-L(3, 2)]. 
See Figure 5 for a description of the specific ARCH filters 
considered. 

The sampling experiments consist of drawing 3,779 ob- 
servations (the first 1,000 observations are discarded to 
avoid dependency on the initial conditions) from each pro- 



cess and computing the recursive statistics V,,,(r), 0 5 r 5 
1, for the data thus obtained. As in Section 2, m is set to 2 
and E to one standard deviation of the generated data. This 
procedure is repeated 1,000 times. 

The results of this simulation exercise clearly suggest 
that none of the preceding ARCH-type processes is consis- 
tent with the behavior of the recursive BDS statistics. This 
statement is based on the following facts. 

First, the number of cases in which the sample path of 
the recursive BDS tests remains inside the 95% bands after 
1,960 observations is extremely small (.03% for GARCH, 
.02% for EGARCH, and 1.9% for SWARCH). Moreover, 
in none of these cases does the sample path remain inside 
the 95% bands throughout all the first 1,960 observations 
for the GARCH and EGARCH data. For the SWARCH 
data, only 1 out of these 19 cases remains inside the bands 
throughout all the first 1,960 observations. This last figure is 
computed without taking into consideration what happens 
during the first 300 observations ( r  = 30012,776 z .lo) 
to avoid small-sample problems. Remember that, as docu- 
mented in Figure 2, the sample paths of the recursive tests 
for both the S&P 500 and the VCRSP series do not go out 
of the 95% bands for the first 1,960 observations (i.e., dur- 
ing the period 1/02/80 through 10/01/87). Finally, for the 
1,000 generated series, the BDS test-&,,(I)---only fails 
to reject the null hypothesis at the 5% level in 3 of the 1,000 
replications involving the SWARCH model, and it always 
rejects the null for the GARCH and EGARCH models. 

Second, another set of interesting statistics is the esti- 
mates of the first time that the sample path V,,,(r) crosses 
the boundaries of the 95% confidence region; that is, {r: 
IV,,,(r)I > 1.96J;;, IV,,,(s)l < 1.96&,0 5 s 5 r).  Again, 
these estimates were computed for values of r > .lo. In the 
simulated data, the mean of these estimates is r = .13 for 
GARCH data and r = .14 for both the EGARCH and the 
SWARCH data, with standard errors of .06, .07, and .08, 
respectively. Therefore, the corresponding value in the ob- 
served S&P 500 series-r = 1,96012,776= .71-is at least 
more than seven standard deviations away from the value 
obtained for any of the generated datasets. 

Third, Figure 5 illustrates most of the preceding points 
quite clearly. This graph shows 95% confidence lower bands 
for the sample paths of the recursive BDS tests obtained in 
the simulations for each of the fitted ARCH filters, as well 
as the path of the recursive BDS test corresponding to the 
S&P 500 data. The 95% confidence lower bands represent 
the mean of the simulated paths minus two standard devi- 
ations. Clearly, the path of the test for the S&P 500 data 
comes out of the bands early on in the sampling period for 
any of the fitted filters. In other words, none of the data- 
generating processes appears consistent with the prolonged 
stay inside the 95% iid confidence bands displayed by the 
BDS recursive tests in Figure 2. After October 1987, how- 
ever, the sample path of the BDS recursive tests borders on 
the 95% lower confidence band for the SWARCH-L(3, 2) 
generated data. Although this cannot be seen as evidence in 
favor of the SWARCH model versus the other two models 
of conditional heteroscedasticity, it is nonetheless interest- 
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ing that the model that allows for different volatility periods 
is the one that comes "closer" to the behavior of the test 
for the S&P 500 data. 

The results presented so far are very much in line with 
Diebold and Lopez's (1995) general conclusion that condi- 
tional heteroscedasticity might not be as general a phenom- 
ena as some of the modern literature seems to indicate, with 
patterns that may vary substantially across different time 
periods. The recursive BDS tests show that between January 
1980 and October 1987 there is little evidence of nonlinear- 
ity and, more concretely, of conditional heteroscedasticity 
in the S&P 500 data. 

3.2 	 Nonstationary Alternatives: Shifts in the 
Unconditional Variance 

As stated in Section 2, structural shifts in the distribution 
of the data are a likely explanation of some of the results 
of the application of the recursive BDS tests to the stock- 
returns indexes considered in this article. The remainder 
of this section presents some sampling experiments with 
models that allow for shifts in the unconditional variance. 
For that reason, the results already presented in the arti- 
cle are complemented with the analysis developed by Tsay 
(1988) to identify breaks in the variance of linear ARMA 
processes. 

The Tsay (1988) approach to variance-change detection 
assumes that an observed time series yt is defined by 

where w is a constant and at is an iidN sequence. Note 
that this setup can be easily generalized to accommodate 
the case in which yt is an ARMA(p, q) model. Tsay (1988) 
used an iterative procedure-labeled as Procedure V-to es-
timate d, the date of a variance change. With the exception 
of some observations at the beginning and the end of the 
sample period, the method assumes that every data point is 
a possible break point, and it computes the ratio of the sam- 
ple variance before that date to the sample variance after 
that date. It then looks for too large or too small values in 
these variance ratios. If a break point is detected, the orig- 
inal series is scaled by the estimated variance ratio after 
the break point and the procedure is repeated until no new 
break points are detected. The distribution of the testing 
procedure is not known, but Tsay (1988) provided simu- 
lated critical values for a few sample sizes. All the critical 
values employed in this article, however, result from boot- 
strapping the null model of no variance changes for the rel- 
evant sample size. The first 50 and the last 50 observations 
are excluded in the search for potential break points. The 
reader is referred to Tsay (1988) for a detailed description 
of the method. 

At the 1% significance level, the Tsay procedure detects 
three break points, occurring at t = 1,950,t = 2,150, and 
t = 2,675, which correspond to 09/21/87, 07/06/88, and 
08/02/90. Therefore, the first break point (t = 1,950) al- 
most coincides with the first time that the recursive BDS 
tests get out of the 95% confidence bands ( t= 1,960). One 
remark is in order. The significance level used for the Tsay 
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Figure 6. Simulation Experiments With Break-Point Models. The solid 
line displays the recursive BDS statistics computed on the S&P 500 
index. 

procedure is more conservative than the one used for the 
BDS recursive tests. This asymmetric treatment of the two 
tests is due to some of the potential problems associated 
with the application of the Tsay procedure to stock returns. 
First, it is not known how the Tsay procedure might be 
affected by nonlinearities; namely, it might be misled by 
potential conditional heteroscedasticity. Second, the Tsay 
procedure is a moments-based technique, and even under 
the assumption that variances are finite, variance-change 
detection might be affected by the nonexistence of higher- 
order moments-namely, fourth moments. For these rea- 
sons, the critical values employed in the application of the 
Tsay procedure are deliberately conservative. In any case, 
it should be stressed that consideration of a 5% significance 
level does not lead to the detection of any break point be- 
fore t = 1,950; that is, there are no break points between 
January 1980 and September 1987. 

Tsay's model assumes that, in between break points, (lin- 
early filtered) stock returns can be described as iid pro- 
cesses. The following sampling experiment tries to assess 
the likelihood of this hypothesis: For each of the periods 
identified by the Tsay procedure, estimate the sample vari- 
ance of the S&P 500 data; then use a normal distribution 
with zero mean and variance set equal to that sample vari- 
ance to draw as many independent observations as the num- 
ber of data points in the period under consideration. Finally, 
apply the recursive BDS test to the resulting data series. As 
for the sampling experiments with ARCH-type models, re- 
peat this procedure 1,000 times. 

This sampling experiment has some major shortcomings. 
First, the extensive work on the characterization of the 
marginal distribution of stock returns leaves little reason 
to believe that the innovations are drawn from a normal 
distribution. Second, although the first of the three break 
points detected by Tsay's procedure is associated with an 
extensively described period of unusual activity in the stock 
market, the other two break points do not seem to be di- 
rectly associated with economically meaningful events. For 
this last reason, I also considered a similar sampling ex- 
periment in which only one break point is considered, cor- 
responding to the first of the break points determined by 
Tsay's procedure. 

Figure 6 displays the path of the BDS recursive tests for 
S&P 500 data as well as 95% confidence bands for the test 
when the data is generated according to the break-point 
models just described. These confidence bands are con- 
structed like the ones in the sampling experiments involv- 
ing ARCH-type models. This graph shows that the behavior 
of the recursive BDS test for S&P 500 data is consistent 
with a data-generating process that draws independent data 
from two distributions with different unconditional vari- 
ances. This is in clear contrast to the results of the sampling 
experiments for ARCH-type models, as well as to Hsieh's 
(1991) results that indicate that the rejections of linearity 
associated with the BDS test cannot be explained by non- 
stationarities. The results displayed in both Figures 5 and 6 
suggest that, during the sample period analyzed in this arti- 
cle, structural shifts in the unconditional variance overstate 
the evidence for conditional heteroscedasticity. 

3.3 ARCH Models and Nonstationary Alternatives 

One question that the sampling experiments with the 
recursive BDS tests cannot address is why the estimated 
ARCH models presented in Section 3.1 provide strong ev- 
idence of ARCH effects in the data. This part of the article 
tries to address this question by considering the following 
experiment: Generate data from the one-break model con- 
sidered in the previous section and fit a GARCH(1, 1) and 
an EGARCH(1, 0) to those series. Repeat this experiment 
1,000 times and then investigate the sampling distribution 
of the parameter estimators. Although of considerable in- 
terest, this experiment does not include the SWARCH-L(3, 
2) model because the estimation of the parameters in this 
model is extremely slow. 

The data generated by the one-break model is taken by 
the maximum likelihood estimators of the parameters as 
coming from highly persistent ARCH models. This is re- 
vealed by the sampling distribution of the parameter esti- 
mators in these two ARCH filters (see Table 2). Restrict- 
ing attention to the autoregressive coefficient in both the 
GARCH(1, 1) and EGARCH(1, 0) filters, the median esti- 
mates are .968 and .871, respectively. The corresponding 
standard errors are .002 and .092. This means that the one- 
break model is capable of generating data that is translated 
into point estimates similar to the ones obtained for the 
stock-returns series. Once again, it should be stressed that 
the one-break model used throughout these sampling ex- 
periments is not necessarily seen as a good approximation 
to the true data-generating process. Its purpose is to illus- 
trate that a model with shifts in the unconditional variance 

Table 2. ARCH Models and Nonstationary Data 

GARCH(1, 1) EGARCH(1, 0) 

Quantile w 4 6 w $ 1  $2 

NOTE. Sampling distribution of the maximum likelihood estimator of the parameters of two 
ARCH filters is f~tted to data generated by the one-break model fitted to the S&P 500 data. 
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can replicate many of the features of some of the statistical 
tools commonly used in the analysis of stock-returns data. 
In particular, note that the autoregressive parameter in the 
GARCH(1, 1) model with the S&P 500 index data-.879- 
is not within the 95% confidence interval constructed from 
the corresponding simulated distribution4.963, .972). The 
estimate of the autoregressive parameter in the EGARCH(1, 
0) model-.909-lies within the bounds of the analogous 
95% confidence interval, however, and, more importantly, 
the range of values obtained in the simulation experiment is 
consistent with strong persistence in the volatility process, 
as it is usually detected in stock-market data. 

These results are also consistent with the work of Diebold 
(1986) and Lamoureux and Lastrapes (1990). These authors 
suggested that breaks in the unconditional variance could 
explain some of the findings of persistence in the condi- 
tional volatility. 

4. CONCLUSIONS 

This article uses a testing methodology developed by de 
Lima (1992) to address the question of whether findings of 
nonlinearities in stock returns have been contaminated by 
possible shifts in the distribution of the first differences of 
the logarithms of some commonly used stock-price indexes. 

This article clearly identifies the October 1987 crash as 
a highly influential event in the study of the dynamics of 
stock-market returns. It also shows that some forms of non- 
stationarity have to be carefully considered in the modeling 
of financial time series-namely, that the patterns of con- 
ditional heteroscedasticity are not constant over time. 
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